THE FIRST EIGENVALUE OF THE DIRAC OPERATOR IN A CONFORMAL CLASS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The first conformal Dirac eigenvalue on 2-dimensional tori

Let M be a compact manifold with a spin structure χ and a Riemannian metric g. Let λ2g be the smallest eigenvalue of the square of the Dirac operator with respect to g and χ. The τ -invariant is defined as τ(M,χ) := sup inf q λ2gVol(M, g) 1/n where the supremum runs over the set of all conformal classes on M , and where the infimum runs over all metrics in the given class. We show that τ(T , χ)...

متن کامل

Extrinsic Eigenvalue Estimates of the Dirac Operator

For a compact spin manifold M isometrically embedded into Euclidean space, we derive the extrinsic estimates from above and below for eigenvalues of the Dirac operators, which depend on the second fundamental form of the embedding. We also show the bounds of the ratio of the eigenvalues.

متن کامل

Eigenvalue Bounds for the Dirac Operator

A natural question in the study of geometric operators is that of how much information is needed to estimate the eigenvalues of an operator. For the square of the Dirac operator, such a question has at least peripheral physical import. When coupled to gauge fields, the lowest eigenvalue is related to chiral symmetry breaking. In the pure metric case, lower eigenvalue estimates may help to give ...

متن کامل

The Dirac Operator and Conformal Compactification

We give results about the L-kernel and the spectrum of the Dirac operator on a complete Riemannian manifold which admits a conformal compactifation to a compact manifold.

متن کامل

The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions

Let us fix a conformal class [g0] and a spin structure σ on a compact manifold M . For any g ∈ [g0], let λ1 (g) be the smallest positive eigenvalue of the Dirac operator D on (M,g, σ). In a previous article we have shown that λmin(M,g0, σ) := inf g∈[g0] λ1 (g)vol(M,g) 1/n > 0. In the present article, we enlarge the conformal class by adding certain singular metrics. We will show that if λmin(M,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Geometric Methods in Modern Physics

سال: 2006

ISSN: 0219-8878,1793-6977

DOI: 10.1142/s0219887806001533